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Abstract__ In this work , we study the 

main properties of lattices and Boolean 

Algebras ,we give various examples. In 

particular we study the finite Boolean 

Algebras . Indeed it is isomorphic to P(X) 

for some x. 

Finally , as an application we study the 

algebra of electrical circuits. 

 

Introduction 

The axioms of a ring give structure to the 

operations of addition and multiplication 

on a set. However; we can construct 

algebraic structures, known as Lattices and 

Boolean Algebras that generalize other 

types of operations. For example, the 

important operations on sets are inclusion, 

union, and intersection. Lattices are 

generalization of order relation on 

algebraic spaces, such as set inclusion in 

set theory and inequality in the familiar 

number systems N, Z, Q, and R. Boolean 

algebras have found application in logic, 

circuit theory, and probability. 

 

 

Lattices and Boolean Algebras 

Partially Order Sets 

We begin by the study of lattices and 

Boolean algebras by generalizing the idea 

of inequality. Recall that a relation on a set 

𝑋 is a subset of 𝑋 x 𝑋 . A relation 𝑃 on 𝑋 

is called a partial order of  𝑋 if it 

satisfies the following axioms: 

1. The relation is reflexive :  𝑎 ,𝑎    𝑃 

for all 𝑎𝑋. 

 

2. The relation is ant symmetric: if  𝑎 , 𝑏  
  𝑃  and  𝑏 ,𝑎  𝑃 then  𝑎 = 𝑏. 
 

 3. The relation is transitive: if  𝑎 , 𝑏 
𝑃and   𝑏 , 𝑐   𝑃 then  𝑎 , 𝑐    𝑃. 

 

We will usually write 𝑎   𝑏 to mean 

 𝑎 , 𝑏 𝑃 unless some symbol is 

naturally associated with a particular  

partial order ,such as a    b with integers 

𝑎 and 𝑏, or  𝑋   𝑌  

with sets 𝑋 and 𝑌 . A set 𝑋 together with a 

partial order   is called a partial order set, 

or poset  . 

 

Example: 
The set of integer (or rational or reals) is 

poset where 𝑎 ≤ 𝑏. has the usual meaning 

for two integers 𝑎 and 𝑏 in Z. 

 

Example: 
Let 𝑋 be any set .We will define the 

power set of 𝑋 to be the set of all subset 

of 𝑋. We denote the power set of  𝑋 by 

𝑃 𝑋  for example, 

 let 𝑋 =  𝑎 , 𝑏, 𝑐 .Then 𝑃 𝑋  is the set of 

all subset of the set  𝑎 , 𝑏, 𝑐 ∶ 

      𝑎       𝑏         𝑐    

 𝑎 , 𝑏} {𝑏, 𝑐   𝑎, 𝑐  {𝑎, 𝑏, 𝑐} 
On any power set of a set  , set inclusion 

  is a partial order. We  can represent 

the order on {𝑎, 𝑏, 𝑐} schematically by a 

diagram such as the on in Figure 1.1 

 

                                         
Figure 1 partial order on P ( 𝑎 , 𝑏, 𝑐 ). 

 

Example: 
 let 𝐺 be a group, the set of subgroup of  𝐺 

is a poset where the partial order is set 

inclusion. 

Proof: 

Let 𝐺 is a group then: 

1. 𝐺    𝐺 since any group subset of it 

self so 𝐺 is reflexive. 
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2. if 𝐺1    𝐺2 & 𝐺2   𝐺1 Then  

𝐺1= 𝐺2 So 𝐺 is ant symmetric  

. 

3.if 𝐺1   𝐺2 & 𝐺2   𝐺3 ,Then 

𝐺1  𝐺3 ,then 𝐺 is transitive. 

 

Example:  
There can be more than one partial order 

on  a particular set. We can form a partial 

order on N by 𝑎    𝑏 if 𝑎 | 𝑏. 

Proof: 
The relation is certainly reflexive since 𝑎 | 

𝑎 for all 𝑎 N . 

If 𝑚| 𝑛 and 𝑛| 𝑚, then 𝑚=𝑛; hence the 

relation is also antisymmetric.  

The relation is transitive, because if  

𝑚 | 𝑛 and 𝑛| 𝑝 ,then 𝑚 | 𝑝. 

 

 Example:  
let 𝑋= 1,2,3,4,6,8,12,24  be a set of 

divisors of 24 with the partial order define 

in  Example 4. Figure 1.2 shows the partial 

order on 𝑋. 

 

 

 
Figure  2 partial order on the divisors of  

24. 

 

 

Last upper bound and great 

lower bound 

Definition : 
 

1- Let 𝑌 be a subset of a poset 𝑋. An 

element u in 𝑋 is an upper bound of Y if 𝑎 

   𝑢 for every element 𝑎   𝑌 . If u is an 

upper bound of 𝑌 such that  

𝑢    𝑣 for every other upper bound     𝑣 of 

𝑌 , then 𝑢 is called a least upper bound or 

supremum of 𝑌 . 

 

2- An element 𝑙 in 𝑋 is said to be a lower 

bound of 𝑌 if 𝑙   𝑎  for all 

 𝑎 𝑌. If 𝑙 is a lower bound of 𝑌 such 

that 𝑘    𝑙 for every other lower bound 𝑘 

of 𝑌 , then 𝑙 is called a greatest lower 

bound or infmum of 𝑌  

 

Example: 
 Let 𝑌 = {2, 3 ,4 ,6} be contained in the set 

𝑋 of Example 5. 

Then 𝑌 has upper bounds 12 and 24, with 

12 as a least upper bound. The 

only lower bound is 1; hence, it must be a 

greatest lower bound. 

As it turns out, least upper bounds and 

greatest lower bounds are unique 

if they exist. 

 

Theorem : 
Let 𝑌 be a nonempty subset of a poset 𝑋. 

If 𝑌 has a least upper bound, then 𝑌 has a 

unique least upper bound. If 𝑌 has a 

greatest lower bound, then 𝑌 has a unique 

greatest lower bound. 

Proof: 
 Let 𝑢1 and 𝑢2 be least upper bounds for  . 

By the definition of the least upper bound, 

𝑢1   𝑢 for all upper bounds 𝑢 of  𝑌 . In 

particular,𝑢1   𝑢2. Similarly, 𝑢2   𝑢1. 

Therefore, 𝑢1 = 𝑢2 by antisymmetry. A 

similar argument 

show that the greatest lower bound is 

unique. 

 

Definition: 
A lattice is a poset 𝐿 such that every pair 

of elements in 𝐿 has a least upper bound 

and a greatest lower bound. The least 

upper bound of  𝑎, 𝑏 𝐿 is called the join 

of 𝑎 and 𝑏 and is denoted by 𝑎   𝑏. The 

greatest lower bound of  𝑎 , 𝑏    𝐿 is 

called the meet of 𝑎 and 𝑏 and is denoted 

by  𝑎   𝑏. 
 

Example 7: 
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Let 𝑋 be a set. Then the power set of 𝑋, 

𝑃(𝑋), is a lattice. 

For two sets 𝐴 and 𝐵 in 𝑃(𝑋), the least 

upper bound of 𝐴 and 𝐵 is 𝐴   𝐵. 

Certainly 𝐴   𝐵 is an upper bound of 𝐴 

and 𝐵, since 𝐴   𝐴   𝐵 and 

𝐵   𝐴   𝐵. If 𝐶 is some other set 

containing both 𝐴 and 𝐵, then 𝐶 must 

contain 𝐴   𝐵; hence, 𝐴  𝐵 is the least 

upper bound of 𝐴 and 𝐵. Similarly, the 

greatest lower bound of 𝐴 and 𝐵 is 

𝐴   𝐵. 

 

Definition: 
Principle of  Duality. Any statement that is 

true for all lattices remains 

true when    is replaced by    and     

and    are interchanged throughout the 

statement. 

The following theorem tells us that a 

lattice is an algebraic structure with two 

binary operations that satisfy certain 

axioms. 

 

Theorem: 
If 𝐿 is a lattice, then the binary operations  

  and    satisfy 

the following properties for 𝑎, 𝑏, 𝑐   𝐿. 

 

1. Commutative laws:  

𝑎  𝑏 =  𝑏  𝑎 and 𝑎  𝑏 =  𝑏   𝑎. 
 

2. Idempotent laws:  

𝑎   𝑎 =  𝑎 and 𝑎    𝑎 =  𝑎. 
 

3. Associative laws: 

 𝑎   (𝑏 𝑐) =  (𝑎  𝑏)  𝑐  and                         

𝑎 (𝑏  𝑐)    =  (𝑎 𝑏)  𝑐. 
 

4. Absorption laws:  

𝑎   (𝑎  𝑏)    =  𝑎  and 

𝑎    (𝑎   𝑏)  =  𝑎. 

Proof. 
By the Principle of Duality, we need only 

prove the first statement 

in each part. 

1. By definition 𝑎   𝑏 is the least upper 

bound of {𝑎, 𝑏}, and b a is the least 

upper bound of  {𝑏,𝑎} however, {𝑎, 𝑏}  =
 {𝑏,𝑎}. 

 

2.The join of 𝑎 and 𝑎 is the least upper 

bound of {𝑎}; hence, 𝑎  𝑎 = 𝑎.  

 

3. We will show that 𝑎  (𝑏  𝑐) and 

(𝑎  𝑏)  𝑐 are both least upper bounds 

of {𝑎, 𝑏, 𝑐}. Let 𝑑 =  𝑎  𝑏. Then 𝑐

𝑑   𝑐 =  (𝑎  𝑏) 𝑐.    We also know 

that 

𝑎    𝑎  𝑏 =  𝑑    𝑑  𝑐 

                      = (𝑎  𝑏)  𝑐.            

A similar argument demonstrates that 𝑏
(𝑎  𝑏)    𝑐 . Therefore, (𝑎  𝑏)  𝑐 

is an upper bound of {𝑎, 𝑏, 𝑐}. We now 

need to show that     (𝑎  𝑏) 𝑐 is the 

least upper bound of {𝑎, 𝑏, 𝑐 }. Let u be 

some other upper bound of {𝑎, 𝑏, 𝑐}.  

Then  𝑎 𝑢  and    𝑢; hence, 

𝑑 =  𝑎 𝑏    𝑢.  

Since 𝑐 𝑢, it follows that 

 (a b)   c =d   c    u. Therefore,  

(𝑎 𝑏)  𝑐 must be the least upper 

bound of {𝑎, 𝑏, 𝑐}. The argument that 

shows  𝑎 (𝑏 𝑐) is the least upper 

bound of {𝑎, 𝑏, 𝑐} is the same. 

Consequently, 

𝑎 (𝑏 𝑐) = (𝑎 𝑏)  𝑐. 
 

4. Let 𝑑 = 𝑎    𝑏. Then 𝑎   𝑎  𝑑. On 

the other hand, 𝑑 =   a 𝑏   𝑎 , 

and so 𝑎  𝑑   𝑎. Therefore, 

𝑎  (𝑎   𝑏)  =  𝑎. 

 

Theorem:  
Let 𝐿 be a nonempty set with two binary 

operations   and  satisfying the 

commutative, associative, idempotent, and 

absorption laws. 

We can define a partial order on 𝐿 by 𝑎    

𝑏 iff  𝑎   𝑏 = 𝑏. Furthermore, 𝐿 is a 

lattice with respect to    if for all  𝑎, 𝑏  

𝐿, we define the least upper bound and 
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greatest lower bound of 𝑎 and 𝑏 by 

𝑎   𝑏 and 𝑎   𝑏, respectively. 

Proof : 

 We first show that L is a poset  under   .  

Since   𝑎 =  𝑎 , 𝑎   𝑎 and     is 

reflexive. To show that    is ant 

symmetric , let 𝑎   𝑏 and 𝑏   𝑎. Then 

𝑎 𝑏 =  𝑏 and 𝑏 𝑎 = 𝑎 . By the 

commutative law,  

𝑏 = 𝑎  𝑏 = 𝑏  𝑎 = 𝑎. 

Finally, we must show that      is 

transitive. Let 𝑎   𝑏 and 𝑏  𝑐. Then 

 𝑎  𝑏 =  𝑏 and 𝑏   𝑐 =  𝑐. Thus, 

 

            𝑎  𝑐  =  𝑎   𝑏  𝑐 

= (𝑎  𝑏) 𝑐 

=  𝑏  𝑐 =  𝑐, 
                   

or 𝑎    𝑐. 

    To show that 𝐿 is a lattice, we must 

prove that 𝑎  𝑏 and 𝑎   𝑏 are, 

respectively, the least upper and greatest 

lower bounds of 𝑎 and 𝑏.  

Since  

𝑎 =   𝑎   𝑏   𝑎 = 𝑎   (𝑎   𝑏), 

it follows that 𝑎    𝑎  𝑏.  

Similarly,  𝑏   𝑎  𝑏. Therefore, 

𝑎   𝑏 is an upper bound for 𝑎 and 𝑏. Let 

𝑢 be any other upper bound of  both 𝑎 and 

𝑏. Then 𝑎   𝑢 and 𝑏    𝑢. But 𝑎   𝑏 

  𝑢 since 

 𝑎   𝑏  𝑢 =  𝑎    𝑏   𝑢      

=  𝑎   𝑢  
                           =  𝑢. 
 

Boolean Algebra  
Let 𝑢 is investigate the example of the 

power set , 𝑃(𝑋) , of a set 𝑋 more 

closely. The power set is a lattice that 

is ordered by inclusion. By the 

definition of the power set, the largest 

element in 𝑃(𝑋) is 𝑋 itself and the 

smallest element is  , the empty set. 

For any set 𝐴 in 𝑃(𝑋), we know that 

𝐴  𝑋 𝐴 and 𝐴
 
   = 𝐴. This 

suggests the following definition for 

lattices. An element  𝐼 in a poset  𝑋 is a 

largest element if 𝑎    𝐼 for all  

𝑎   𝑋. An element 𝑂 is a smallest 

element of 𝑋 if 𝑂    𝑎 for all 𝑎 𝑋.  

    Let A be in P(X). Recall that the 

complement of A is 

 𝐴′ =  𝑋 \ 𝐴  

= {𝑥 ∶  𝑥  𝑋 and  𝑥  𝐴}. 

We know that 𝐴    𝐴′ =  𝑋 and 

𝐴 ∩  𝐴′ =   . We can generalize this 

example for lattices. A lattice 𝐿 with a 
largest element 𝐼 and a smallest element 𝑂 

is complemented  if  for each 𝑎   𝑋, there 

exists an a' such that 𝑎   𝑎′ =  𝐼  and 

𝑎   𝑎′ =  𝑂. 
In a lattice 𝐿, the binary operations   

and   satisfy commutative and 

associative laws ; however, they need not 

satisfy the distributive law 

𝑎    𝑏   𝑐  = 𝑎   𝑏    𝑎   𝑐  

 

however, in 𝑃(𝑋) the distributive law is 

satisfied since  

 𝐴   𝐵   𝐶 = (𝐴  𝐵)   (𝐴   𝐶)                     

for 𝐴,𝐵,𝐶   𝑃(𝑋). We will say that a 

lattice 𝐿 is distributive if the 

following distributive law holds: 

𝑎    𝑏 𝑐 = (𝑎   𝑏)   (𝑎   𝑐) 

for all 𝑎, 𝑏 , 𝑐  𝐿. 

 

Theorem: 
A lattice L is distributive if and only if 

𝑎   (𝑏   𝑐)= (𝑎   𝑏)   (𝑎  𝑐) 

for all 𝑎, 𝑏, 𝑐   𝐿 . 

Proof: 
 Let us assume that   is a distributive 

lattice. 

𝑎    𝑏   𝑐  

 =   𝑎    𝑎   𝑐     𝑏   𝑐                           

= 𝑎   [(𝑎  𝑐)   (𝑏   𝑐)] 

= 𝑎   [(𝑐  𝑎)   (𝑐   𝑏)]   

=  𝑎   [𝑐   (𝑎   𝑏)] 
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=  𝑎     𝑎  𝑏   𝑐                

=    𝑎   𝑏   𝑎     𝑎   𝑏   𝑐                  

=  (𝑎   𝑏)   (𝑎   𝑐).                                                       

The converse follows directly from the 

Duality Principle. 

Definition: 

A Boolean algebra is a lattice B with a 

greatest element 𝐼 and a smallest element 

𝑂 such that 𝐵 is both distributive and 

complemented. 

The power set of  𝑋,𝑃(𝑋), is our prototype 

for a Boolean algebra. As it turns out, it is 

also one of  the most important Boolean 

algebras. The following theorem allows us 

to characterize Boolean algebras in terms 

of the binary relations   and   without 

mention of the fact that a Boolean algebra 

is a poset. 

 

 

Theorem: 
 𝐴 set 𝐵 is a Boolean algebra if and only if 

there exist binary operations   and   

on 𝐵 satisfying the following axioms. 

1. 𝑎   𝑏 =  𝑏  𝑎 and  

𝑎  𝑏 =  𝑏   𝑎  for 𝑎. 𝑏   𝐵. 

2. 𝑎    𝑏   𝑐 = (𝑎  𝑏)   𝑐 and 

𝑎    𝑏   𝑐 =   𝑎   𝑏   𝑐 

  for 𝑎, 𝑏, 𝑐   𝐵. 

3. 𝑎  (𝑏  𝑐) =(𝑎   𝑏)  (𝑎 𝑐) 

and 

𝑎  (𝑏 𝑐)  =  (𝑎   𝑏) (𝑎   𝑐) 

for 𝑎, 𝑏, 𝑐   𝐵. 

4. There exist elements I and O such that 

𝑎   𝑂 =  𝑎 and 𝑎   𝐼 =  𝑎   for all 

𝑎   𝐵. 

5. For every 𝑎   𝐵 there exists an 

𝑎′   𝐵 such that 𝑎   𝑎′ =  𝐼 and 

𝑎   𝑎′ =  𝑂. 

Proof: 
 Let 𝐵 be a set satisfying (1) - (5) in the 

theorem. One of the 

idempotent laws is satisfied since 

        𝑎 = 𝑎   𝑂 

=  𝑎  (𝑎   𝑎′         

=  (𝑎   𝑎 )   (𝑎   𝑎′)

=  (𝑎   𝑎 )   𝐼 =  𝑎   𝑎. 

 
Observe that 

𝐼   𝑏 =  (𝐼   𝑏)   𝐼 =

 (𝐼   𝐼)  (𝑏   𝐼)  =  𝐼   𝐼 =  𝐼.               

Consequently, the first of the two 

absorption laws holds, since 

  𝑎  𝑎   𝑏 =  𝑎   𝐼   𝑎   𝑏                      

                          =  𝑎   (𝐼   

= 𝑎   𝐼                   =  𝑎. 

The other idempotent and absorption laws 

are proven similarly. Since 𝐵 

also satisfies (1) - (3), the conditions of  

Theorem  are met, therefore, 

𝐵 must be a lattice. Condition (4) tells us 

that 𝐵 is a distributive lattice. 

 For 𝑎   𝐵,𝑂 𝑎 =  𝑎; hence, 𝑂     𝑎 

and 𝑂 is the smallest element in 𝐵. 
To show that I is the largest element in 𝐵, 

we will first show that  𝑎  𝑏 =  𝑏 is 

equivalent to 𝑎   𝑏 =  𝑎. Since 

𝑎  𝐼 =  𝑎 for all 𝑎    𝐵, using the 

absorption  laws we can determine that 

 𝑎 𝐼 =   𝑎   𝐼  𝐼                

            =   𝐼   𝐼   𝑎  =  𝐼                

or 𝑎   𝐼 for all a in 𝐵. Finally, since we 

know that 𝐵 is complemented by  (5), 𝐵 

must be a Boolean algebra. 
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   Conversely, suppose that 𝐵 is a Boolean 

algebra. Let 𝐼 and 𝑂 be the 

greatest and least elements in 𝐵, 

respectively. If we define 𝑎 𝑏 and  

𝑎  𝑏 as least upper and greatest lower 

bounds of {𝑎, 𝑏}, then 𝐵 is 𝑎 Boolean 

algebra by Theorem , our hypothesis.  

Many other identities hold in Boolean 

algebras. Some of these identities are 

listed in the following theorem. 

Theorem: 

 Let 𝐵 be a Boolean algebra. Then 

1.𝑎 𝐼 =  𝐼 and 𝑎   𝑂 =  𝑂  

for all 𝑎   𝐵. 

 

2. If  𝑎 𝑏 =  𝑎  𝑐 and  

𝑎   𝑏 =  𝑎  𝑐 for 𝑎, 𝑏, 𝑐  𝐵,  

then 𝑏 =  𝑐. 

 

3. If 𝑎 𝑏 =  𝐼 and 𝑎  𝑏 =  𝑂,  

then 𝑏 =  𝑎′. 
 

4. (𝑎′) ′ =  𝑎 for all 𝑎    𝐵. 

 

5. 𝐼′  =  𝑂 and 𝑂′  =  𝐼. 
 

6. (𝑎  𝑏) ′ =  𝑎′  𝑏′ and (𝑎  𝑏) ′ =

 𝑎′  𝑏′ (De Morgan's Laws). 

Proof: 

1) 𝑎   𝐼 =  𝑎   𝐼   𝐼      

= 𝐼 ( 𝐼 𝑎) =  𝐼. 
 

2) 𝑎 𝑏 =  𝑎    𝑐 and 𝑎 𝑏 =

 𝑎  𝑐, we have  

 

                      𝑏 =  𝑏   𝑏 𝑎  

                          =  𝑏  𝑎 𝑏  

        =  𝑏   𝑎   𝑐  

                          =  (𝑏 𝑎)  (𝑏 𝑐) 

                     =   𝑎  𝑏    𝑏 𝑐  

                  =  (𝑎 𝑐)   (𝑏 𝑐) 

                 =  (𝑐 𝑎)   (𝑐 𝑏) 

                          =  𝑐 (𝑎  𝑏) 

                         =  𝑐 (𝑎  𝑐) 

                         =  𝑐 (𝑐   𝑎) 

                         =  𝑐. 
 

3)  𝑎 𝑏  = (𝑎  𝑎′) and 

(𝑎   𝑏) = (𝑎   𝑎′) By (2)
 𝑏 =  𝑎′. 
  

4)By (3)  𝑎   𝑎
′ =  𝑂  and 

 𝑎  𝑎′ =  𝐼 (a')' = a . 

 

5) 𝐼 =  𝑎  𝑎′  , then  

  𝐼 =  𝑎  𝑎′ 
′
   

 

 

𝐼′  =  𝑎 ′   (𝑎′) ′ 

     =   𝑎 ′   𝑎 

    =  𝑂. 

And  𝑂 =  𝑎   𝑎′ , then    

     (  𝑂 =  𝑎   𝑎′) ′ 

        𝑂′   =   𝑎 ′   (𝑎′) ′ 

         𝑂′  =  𝑎 ′  𝑎 

                =  𝐼. 
 

6) (𝑎  𝑏) ′ =  𝑎′  𝑏′, since 

 

(𝑎  𝑏) (𝑎′  𝑏′)   

= (𝑎  𝑏  𝑎′)  (𝑎  𝑏  𝑏′)                                

=  𝑎  𝑎′  𝑏   𝑎   𝑏  𝑏′   

= (𝐼  𝑏)  (𝑎 𝐼) 

= 𝐼 

Similarly  𝑎  𝑏   𝑎′   𝑏
′ = 𝑂 

 

Finite Boolean Algebras 
A Boolean algebra is a finite Boolean 

algebra if it contains a finite number of 

elements as a set. Finite Boolean algebras 

are particularly nice since we can classify 

them up to isomorphism. 

   Let  𝐵 and 𝐶 be Boolean algebras. A 

bijective map  𝛷: 𝐵   𝐶 is an 

isomorphism of Boolean algebras if 

 

       𝛷 (𝑎   𝑏)  =   𝛷 (𝑎) 𝛷 (𝑏) 

       𝛷 (𝑎   𝑏)  =   𝛷 (𝑎) 𝛷 (𝑏) 

for all 𝑎 and 𝑏 in 𝐵. 
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We will show that any finite Boolean 

algebra is isomorphic to the Boolean 

algebra obtained by taking the power set 

of some finite set 𝑋. We will need a few 

lemmas and definitions before we prove 

this result.  

 

Definition : 
Let 𝐵 be a finite Boolean algebra. An 

element 𝑎  𝐵 is an atom of 𝐵 if  𝑎 ≠

 𝑂 and 𝑎  𝑏 =  𝑎 for all 𝑏  𝐵. 

Equivalently, 𝑎 is an atom of 𝐵 if there is 

no nonzero 𝑏 𝐵 distinct from 𝑎 such 

that 𝑂   𝑏   𝑎. 

 

 

 

Lemma: 
  Let 𝐵 be a finite Boolean algebra. If 

𝑏 is a nonzero element of  𝐵, then there 

is an atom 𝑎 in 𝐵 such that 𝑎    𝑏. 

Proof: 
If 𝑏 is an atom, let 𝑎 =  𝑏. Otherwise, 

choose an element 𝑏1, not equal to 𝑂 or 𝑏, 

such that 𝑏1   𝑏. We are guaranteed that 

this is possible since 𝑏 is not an atom. If 𝑏1 

is an atom, then we are done. If not, 

choose 𝑏2, not equal to 𝑂 or 𝑏1, such that 

𝑏2   𝑏1. Again, if 𝑏2 is an atom, let 𝑎 = 𝑏2 

continuing this process, we can obtain a 

chain 

 

     𝑂    …     𝑏3    𝑏2    𝑏1    𝑏. 

Since 𝐵 is a finite Boolean algebra, this 

chain must be finite. That is, for some 𝑘, 

𝑏k is an atom. Let 𝑎 = 𝑏k. 

 

Lemma : 
  Let 𝑎 and 𝑏 be atoms in a finite Boolean 

algebra 𝐵 such that 𝑎 ≠  𝑏. 

 Then 𝑎    𝑏 = 𝑂. 

Proof: 
 Since 𝑎   𝑏 is the greatest lower bound 

of 𝑎 and 𝑏, we know that 𝑎  𝑏   𝑎. 

Hence, either 𝑎   𝑏 =  𝑎 or 𝑎  𝑏 =

 𝑂. However, if 𝑎 𝑏 =  𝑎, then either 𝑎 

  𝑏 or 𝑎 =  𝑂. In either case we have a 

contradiction because 𝑎 and 𝑏 are both 

atoms; therefore, 𝑎   𝑏 =  𝑂. 
 

Lemma: 
  Let B be a Boolean algebra and  

𝑎, 𝑏    𝐵. The following 

statements are equivalent. 

1. 𝑎     𝑏. 

2. 𝑎   𝑏′ =  𝑂. 

3. 𝑎′   𝑏 =  𝐼. 

Proof: 

 (1)   (2).  If 𝑎    𝑏, then 𝑎   𝑏 =

 𝑏. Therefore, 

     𝑎   𝑏′ =  𝑎   (𝑎   𝑏)′ 

                     =  𝑎   (𝑎′   𝑏′) 
 

                     =   𝑎   𝑎′   𝑏′  

 

                     =  𝑂  𝑏′ 
 

                     =  𝑂. 
 

 (2)  (3). If 𝑎  𝑏′ =  𝑂, then 

𝑎 ′ 𝑏 =  (𝑎  𝑏′)′ =  𝑂′ =  𝐼. 

(3)  (1). If 𝑎′  𝑏 =  𝐼, then 

    𝑎 =  𝑎   (𝑎′  𝑏)       

       =  (𝑎   𝑎′)   (𝑎   𝑏) 

       =  𝑂   (𝑎  𝑏) 

       =  𝑎   𝑏. 

Thus, 𝑎    𝑏. 

Lemma: 
 Let 𝐵 be 𝑎 Boolean algebra and 𝑏 and 𝑐  

be elements in 𝐵 such that 𝑏   𝑐.  

Then there exists an atom 𝑎   𝐵 such 

that  𝑎     𝑏 and 𝑎     𝑐. 

Proof:  

By Lemma 2.3, 𝑏   𝑐′ ≠  𝑂. Hence, 

there exists an atom 𝑎 such that 
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 𝑎      𝑏   𝑐′. Consequently, 𝑎    𝑏 

and a    c.  

 

Lemma: 

Let 𝑏   𝐵 and 𝑎1,…,𝑎n be the atoms of  

𝐵 such that 𝑎i   𝑏. 

Then 𝑏 = 𝑎1 … 𝑎n. Furthermore, if 

𝑎,𝑎1 ,…,𝑎n are atoms of B such that 𝑎   

𝑏, 𝑎i   𝑏, and  

𝑏 = 𝑎   𝑎1   …   𝑎n, then 𝑎 =  𝑎i 

for some  i = 1,…, n. 

Proof: 

Let 𝑏1 = 𝑎1  … 𝑎n. Since 𝑎i   𝑏 for 

each 𝑖, we know that 𝑏1  𝑏. If we can 

show that 𝑏    𝑏1, then the lemma is true 

by ant symmetry. Assume  𝑏  𝑏1. Then 

there exists an atom 𝑎 such that 𝑎   𝑏 

and 𝑎  b1. Since 𝑎 is an atom and 𝑎   

𝑏, we can deduce that 𝑎 = 𝑎i for some 𝑎i. 

However, this is impossible since 𝑎   𝑏1. 

Therefore, 𝑏   𝑏1. 

  Now suppose that 𝑏 =  𝑎1  ... 𝑎n. If 

𝑎 is an atom less than 𝑏, 

  𝑎 =  𝑎   𝑏  

      =  𝑎   (𝑎1  … 𝑎n)  

      = (𝑎   𝑎1)  …  (𝑎   𝑎n). 

But each term is 𝑂 or a with 𝑎   𝑎i 

occurring for only one 𝑎i. Hence, by 

Lemma 𝑎 =  𝑎i for some 𝑖.  

Theorem:  

Let 𝐵 be a finite Boolean algebra. 

Then there exists a set 𝑋 such that 𝐵 is 

isomorphic to 𝑃(𝑋). 

Proof: 
We will show that 𝐵 is isomorphic to 

𝑃(𝑋), where 𝑋 is the set of atoms of 𝐵. 

Let 𝑎   𝐵.  By Lemma ,we can write a 

uniquely a 𝑎 = 𝑎1  …  𝑎n for           

𝑎1,…, 𝑎nX.  Consequently, we can 

define a map 

𝛷 ∶  𝐵 →  𝑃(𝑋) by 

 𝛷(𝑎)  =  𝛷(𝑎1   …  𝑎n)  

            = {𝑎1,…, 𝑎n}. 

Clearly ,𝛷 is onto. 

Now let 𝑎 =  𝑎1  …  𝑎n and 𝑏 =  𝑏1

 …  𝑏m be elements in 𝐵, where each 

𝑎i and each 𝑏i is an atom.  

 If 𝛷(𝑎)  =  𝛷(𝑏), then {𝑎1,…, 𝑎n}= 

{𝑏1,…, 𝑏m} and 𝑎 =  𝑏. Consequently, 𝛷 

is injective. 

  The join of 𝑎 and 𝑏 is preserved by 𝛷 

since 

 

 𝛷  𝑎 𝑏  =  𝛷(𝑎1  … 𝑎n  𝑏1                               

 …. 𝑏m) 

                    =  {𝑎1, …, 𝑎n,𝑏1,…, 𝑏m} 

                 = {𝑎1,…, 𝑎n}   {𝑏1,…, 𝑏m} 

                 = 𝛷(𝑎1 … 𝑎n)   

                      𝛷 (𝑏1 …  𝑏m 

                   =  𝛷(𝑎)   𝛷(𝑏). 

Similarly ;   𝛷(𝑎 𝑏)  =  𝛷(𝑎)  𝛷(𝑏). 

corollary: 

The order of any finite Boolean 

algebras must be  2
n
 for some positive 

integer n. 

 

The Algebra of Electrical 

Circuits 
     
The usefulness of  Boolean algebras has 

become increasingly apparent over the 

past several decades with the development 
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of the modern computer . The circuit 

design of computer chips can be expressed 

in terms of Boolean algebras. In this 

section we will develop the Boolean 

algebra of electrical circuits and switches; 

however, these results can easily be 

generalized to the design of integrated 

computer circuitry. 

    A switch is a device, located at some 

point in an electrical circuit, that 

controls the flow of current through the 

circuit. Each switch has two possible 

states: it can be open, and not allow the 

passage of current through the circuit, or a 

it can be closed, and allow the passage of 

current. These states are mutually 

exclusive. We require that every switch be 

in one state or the other: a switch cannot 

be open and closed at the same time. Also, 

if one switch is always in the same state as 

another, we will denote both by the same 

letter that is, two switches that are both 

labeled with the same letter a will always 

be open at the same time and closed at the 

same time. 

    Given two switches, we can construct 

two fundamental types of circuits. Two 

switches 𝑎 and 𝑏 are in series if they make 

up a circuit of the type that is illustrated in 

Figure 3.3. Current can pass between the 

terminals 𝐴 and 𝐵 in a series circuit only if 

both of the switches a and b are closed. 

We will denote this combination of 

switches by 𝑎   𝑏. Two switches a and b 

are in parallel if they form a circuit of the 

type that appears in Figure 3.4. In the case 

of a parallel circuit, current can pass 

between 𝐴 and 𝐵 if either one of the 

switches is closed. We denote a parallel 

combination of circuits 𝑎 and 𝑏 by 

𝑎    𝑏. 

 
Figure 3.3. 𝑎   𝑏 

 

Figure 3.4. 𝑎    

We can build more complicated electrical 

circuits out of series and parallel circuits 

by replacing any switch in the circuit with 

one of these two fundamental types of 

circuits. Circuits constructed in this 

manner are called series-parallel circuits. 

    We will consider two circuits equivalent 

if they act the same. That is, 

if we set the switches in equivalent circuits 

exactly the same we will obtain the same 

result. For example, in a series circuit 

𝑎   𝑏 is exactly the same as 𝑏   𝑎. 
Notice that this is exactly the commutative 

law for Boolean algebras. In fact, the set 

of all series-parallel circuits forms a 

Boolean algebra under the operations of 

  and  . We can use diagrams to 

verify the different axioms of a Boolean 

algebra. The distributive law,  

𝑎   (𝑏   𝑐= (𝑎   𝑏)   (𝑎   𝑐)  

is illustrated in Figure 3.5. If 𝑎 is a switch, 

then 𝑎′ is the switch that is always open 

when 𝑎 is closed and always closed when 

𝑎 is open. A circuit that is always closed is 

𝐼 in our algebra; a circuit that is always 

open is 𝑂. The laws for 𝑎   𝑎′ =  𝑂 and 

a   a′ =  I are shown in Figure 3.6. 

 

 

Figure 3.5. 

𝑎   (𝑏   𝑐)  =

 (𝑎   𝑏)   (𝑎   𝑐) 

 

Example: 
Every Boolean expression represents a 

switching circuit. For 

example, given the expression 

(𝑎   𝑏)   (𝑎   𝑏′)   (𝑎   𝑏), we 

can construct the circuit in Figure 3.7. 

 

 

Theorem: 
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The set of all circuits is a Boolean algebra. 

We can now apply the techniques of 

Boolean. 

 

Figure 3.6. 

𝑎   𝑎′ =  𝑂 and 𝑎   𝑎′ =  𝐼 

 

            Figure 

3.7. (𝑎   𝑏)   (𝑎   𝑏′)   (𝑎   𝑏) 
 

algebras to switching theory. 

 

 

Example: 

 

 Given a complex circuit, we can now 

apply the techniques of  Boolean algebra 

to reduce it to a simpler one. Consider the 

circuit in Figure 3.7. Since 

(𝑎   𝑏)   (𝑎  𝑏′)   (𝑎   𝑏)  

=  (𝑎   𝑏)   (𝑎   𝑏)   (𝑎   𝑏′) 
                                                         

            =  (𝑎   𝑏)   (𝑎   𝑏′) 

                             =  𝑎   (𝑏   𝑏′) 
   =  𝑎 

we can replace the more complicated 

circuit with a circuit containing the 

single switch a and achieve the same 

function. 
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